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Abstract
By applying effective medium-style calculations to random spring networks,
we demonstrate that internal stresses fundamentally alter the nature of the
rigidity transition in disordered materials, changing it from continuous to first
order and increasing the mean coordination number z at which rigidity first
occurs. Furthermore, we predict the existence of a novel stability regime at
low z when the distribution of stresses is asymmetric. Means of verifying these
predictions are suggested.

PACS numbers: 46.32.+x, 61.43.−j, 62.20.Fe

1. Introduction

Predicting under what conditions a given material will support an applied load without
undergoing plastic deformation is clearly of great importance to materials science and industry
alike. When the material in question is ordered, the periodicity of the microstructure allows
the elastic moduli to be derived from the properties of the constituent particles in a manner
that is, at least in principle, straightforward. Inhomogeneous materials pose significant new
problems [1]. Model disordered systems have revealed that the elastic moduli typically vanish
continuously as the volume fraction (or some related parameter) drops below a critical value
[2]. This rigidity transition appears to bear some of the hallmarks of continuous phase
transitions in thermal systems [3], such as a diverging fluctuation correlation length and some
degree of universality in scaling behaviour near the transition [4]. Experiments on materials
such as chalcogenide glasses are broadly consistent with this picture [1, 5, 6] (but see later).

In all the model systems considered thus far, it has been assumed that the material
is initially either everywhere unstressed, or everywhere under tension [7]. An overlooked
possibility is the existence of internal stresses, i.e. stresses that exist on the microscopic scale
that average to zero on macroscopic lengths. This omission would be valid if the material was
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formed in a way that allowed the total elastic energy stored in interparticle bonds to fully relax
to its global minimum. However, there has been much recent interest in materials for which this
is unlikely to be true. Glasses [8], particulate constructs [9] and soft condensed matter systems
such as dense foams and emulsions [10] are formed by the kinetic arrest of the constituent
particles under suitable driving and boundary conditions, producing configurations which have
a quenched-in distribution of interparticle forces. Indeed, simulations of ground-state atomic
glasses have revealed internal stresses far greater in magnitude than the macroscopic value
[11], and the long-time relaxation of a range of ‘jammed’ soft materials has been generically
attributed to stressed local regions [12].

That internal stresses will alter the mechanical response is clear. Elastic filaments provide
a familiar and canonical example: when placed under tension they may be plucked and will
return to their original state, in contrast to compressed bands which readily buckle [13].
Such considerations become no less important on microscopic length scales, where internal
forces can significantly alter the mechanical stability of the ensemble, even in the absence
of a macroscopic prestress [14]. States of self-stress are already known to alter the classic
Maxwell counting rules, increasing the number of displacement modes that do not violate the
constraints imposed by interactions [15]. However, it is not yet known how internal stresses
alter the nature of the transition.

The purpose of this paper is to determine the role of internal stresses on the rigidity
transition to and from mechanically stable states for a simple class of disordered solid, namely
random Hookean spring networks at zero temperature. This is achieved using a novel,
analytically tractable approximation scheme that qualitatively agrees with known results for
unstressed systems. We find that any internal stress changes the transition from continuous
to first order, i.e. the elastic moduli are finite at the onset of rigidity. Furthermore, the mean
number of contacts per particle z at which the system becomes rigid increases with respect to
its unstressed value, with a power law dependency on the magnitude of internal stresses. We
also predict the existence of a new stable regime at low z for asymmetric stress distributions.
Means to experimentally verify these predictions are suggested.

2. Assumptions of the model

Given that the approach adopted in this paper involves several novel approximations, it is
perhaps sensible to first discuss their strengths and limitations with respect to more established
approaches. These will be discussed in this section. For future reference, the combined
approximation scheme used here shall be referred to as the mean mode approximation or
MMA.

The closest scheme to MMA is known as the effective medium approximation or EMA.
Here, the inhomogeneous network is mapped onto an analogous, homogeneous substrate
for which the Green’s response to a point force is known. For bond-diluted lattice models,
the choice of analogous system is clear: a complete lattice with every bond occupied, but
where every spring has an effective spring constant keff . The goal is then to find keff [16].
A key problem in extending this method to prestressed systems is that Green’s function is
usually not known, even for a homogeneous system [7]. The MMA approach, on the other
hand, instead assumes that the displacement field around a perturbed bead takes a particular,
averaged form, as detailed below. This can be viewed as a more drastic approximation than
EMA, and indeed the reduction in the local degrees of freedom inevitably results in the rigidity
transition occurring at a lower coordination number z as EMA. However, it has the advantage
of not requiring an analogous system (with a known Green’s function) to be identified, and
can therefore be applied to unstressed and internally stressed networks alike. For unstressed
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networks, for which results from EMA are known, the MMA approach adopted here gives
qualitatively the same behaviour as EMA, including a transition at finite coordination number
z and an exponent of unity for the elastic moduli as one traverses the transition. It is therefore
not unreasonable to suppose that it also qualitatively predicts the correct behaviour when
internal stresses are incorporated.

Much of our understanding of rigidity percolation has come from simulations, so it is
natural to ask why a numerical scheme has not been adopted. The answer is essentially
one of simplicity. For unstressed networks, it is straightforward to simply dilute bonds from
an ordered lattice, taking care to slightly displace the lattice nodes to avoid collinearity and
coplanarity of bonds. Force balance is obeyed everywhere by the simple fact that all forces
are zero. This is not true in the presence of stresses: removing a bond from a stressed
network will typically violate local force balance, requiring relaxation of the network to a
new stable configuration for every contact broken. Thus networks constructed by a physically
realistic procedure that do not relax all their internal stresses are fundamentally a product of
their history, and CPU-intensive algorithms such as molecular dynamics will be required to
generate the proper starting condition. Such methods are beyond the scope of this paper. The
aim of this paper is partly to inspire simulation work to verify the predictions made, but also to
pave the way for a full, theoretical understanding of the rigidity transition in stressed systems,
for which the MMA provides a first, quite possibly qualitatively correct, first step.

Finally, we comment on the use of central force networks. The history of rigidity
percolation has been somewhat confused by the study of central force networks, although the
situation for unstressed networks is now clear (see e.g. [1] for a full range of results). An
obvious objection is then, why risk jeopardizing this work with a potentially troublesome
system? The answer is twofold. Firstly, simplicity: central force systems have fewer
parameters to consider and therefore give a clearer picture of the effects of internal stresses.
Secondly, however, and much more importantly, is that many of the systems mentioned
in the introduction (for which internal stresses are likely to exist), such as wet foams,
emulsions, frictionless granular media and Lennard-Jones systems [8–10], are central force.
Studying central force systems is therefore of immediate and significant interest if one hopes to
understand these materials. It also serves as a first step towards understanding other materials
which are not central force, such as frictional granular media and atomic systems, which could
be tackled by constructing an extending MMA scheme with transverse forces.

3. Definition of the model

Our model system consists of a collection of particles α interacting via some known finite-
ranged interaction potential to produce a static body in which force balance is everywhere
obeyed. (In the language of networks, the α are nodes interconnected by force-transferring
bonds.) The position of each particle is specified by the d-dimensional Cartesian vector xα ,
and the displacement to a connected particle β is xβ − xα = rαβ n̂αβ in terms of the unit
vector n̂αβ and the centre-to-centre distance rαβ > 0. The force on β due to α is given by the
central law f (r) as fαβ = f (rαβ)n̂αβ , so compressive contacts correspond to positive f . For
simplicity, we assume all interactions are Hookean with identical spring constants k > 0 and
natural lengths r0, i.e. f (r) = −k(r − r0) = −kr0ε in terms of the dimensionless extension
ε = (r − r0)/r0.

The macroscopic stress in the initial configuration depends on the joint probability
distribution of n̂αβ and rαβ . For simplicity, we assume here that the bond vectors n̂αβ are
uniformly distributed on the unit (d − 1)-dimensional hypersphere, and independent of the
rαβ . This ensures the macroscopic stress field is isotropic. Since our ultimate goal is to
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elucidate the role of internal stresses, we look for the simplest distribution P(εαβ) that gives
zero global stress and thus choose P(ε) = pδ(ε − ε0) + (1 −p)δ(ε − ε1) with p ∈ (0, 1). The
macroscopic stress tensor is then diagonal with pressure ∼kr2−d

0 [pε0 +(1−p)ε1] for |εi | � 1,
and requiring that this vanishes gives ε1 ≈ −ε0p/(1 − p) in terms of the two free parameters
ε0 and p. Note that here and below we consider |εi | � 1, i.e. a small perturbation around the
unstressed limit εi ≡ 0, as this facilitates some of the subsequent analysis, although no crucial
modification for larger deformations is expected. Physically, this corresponds to systems of
slightly deformed particles, or to a network that has relaxed close to, but not quite reaching,
its global energy minimum in which all nodes are separated by their natural spring lengths.

The mechanical stability of a configuration is determined by applying an infinitesimal
external force δfext to a randomly selected particle α, and allowing all particles β (including α)
to relax into a nearby configuration xβ + δxβ . If this nearby configuration obeys force balance,
and the work done by the external agent δW is positive, the system is deemed stable; negative
work is assumed to signify mechanical instability due to the inability of the interparticle
forces to support the load. Note that this force probe need not come from some spontaneous
fluctuation in the steady state, whose origin would be obscure for the athermal systems under
consideration here, but may be due to mechanical noise from an external source, or the final
fluctuation in contact forces as the system is quenched into its final configuration by whatever
preparation procedure is employed.

In analogy with statistical mechanics, the macroscopic response is expected to depend
on the microscopic configuration only through a small set of suitably selected parameters.
We henceforth ensemble average over all local degrees of freedom consistent with a given
bond extension distribution P(ε) and the mean coordination number (number of bonds per
particle) z. The requirement of force balance in the perturbed configuration is

δf ext
i + k

〈∑
β

A
αβ

ij

(
δx

β

j − δxα
j

)〉
P(ε),z

= 0 (1)

where the sum is overall β interacting with α. Here, the change in interaction force on β

due to α has been written as δf
αβ

i = −kA
αβ

ij

(
δx

β

j − δxα
j

)
, where for the central forces under

consideration here,

A
αβ

ij = n̂
αβ

i n̂
αβ

j + εαβ
(
δij − n̂

αβ

i n̂
αβ

j

)
, (2)

with δij being the Krönecker delta. This projects out the component of the relative displacement
parallel to the bond, which alters the magnitude of the force by an amount proportional to −k,
and the transverse component, which (in this linearized scheme) describes the rotation of the
original force −kr0ε

αβ .
The displacement field δx depends on the entire initial configuration and is too complex to

treat exactly. Instead, observe that 〈δxα〉 = λδfext for the isotropic systems under consideration
here, where the value of the compliance λ is determined later. A first approximation is then to
replace the global dependency of δxα in (1) by the local form δxα = λδfext. No such average
form is immediately apparent for δxβ , but closure is possible by assuming that the change in
contact force δfαβ can be viewed as an external force on β, i.e. δxβ = λδfαβ with the same λ

as before. Inserting these two approximations into (1) and (2), and eliminating the δx gives

δf
αβ

i = S
αβ

ij δf ext
j ,

(3)
S

αβ

ij = [1 + (λk)−1]−1n̂
αβ

i n̂
αβ

j + [1 + (εαβλk)−1]−1(δij − n̂
αβ

i n̂
αβ

j

)
.

The second rank tensor S
αβ

ij gives the propagation of force from α to a connected particle β,
and is expressed here in terms of projection operators parallel and perpendicular to the contact



First-order rigidity transition in internally stressed networks 10775

-0.1

-0.05

0

0.05

0.1

1 1.5 2 2.5 3 3.5 4 4.5 5

ε 0

z

0

0.2

0.4

3 4 5

K

zeff

Unstable Stable

Figure 1. Combinations of coordination number z and dimensionless extension ε0 that generate
stable systems, here shown for the symmetric case p = 1

2 (so ε1 = −ε0) and dimension d = 3.
The solid disc is the continuous transition; all other transitions are first order. (Inset) K versus z

for ε0 = 0 (solid straight line) and ε0 = 0.01 (dashed), demonstrating the first-order transition and
multiplicity of solutions in the latter case.

vector n̂αβ . Note that the unphysical singularity at ελk = −1 is avoided by the stability
equation given below.

Inserting (3) into (1) and averaging over P(ε) and n̂αβ gives the following equation for λ,

d

(
1 − 1

z

)
= 1

1 + λk
+ (d − 1)

{
p

1 + ε0λk
+

1 − p

1 + ε1λk

}
. (4)

The work done by the external agent is δW = 1
2λ|δfext|2, so stability corresponds to positive,

real roots of λ in (4). Although λ is in principle a measurable quantity, a more convenient
order parameter for quantifying the order of the transition is the bulk elastic modulus K, which
is related to λ via K ∼ r2−d

0 λ−1 with a dimensionless prefactor that will not concern us here.

4. Results

To test the validity of the approximations, we first consider unstressed systems ε0 ≡ ε1 ≡ 0,
for which the transition is known to be continuous. In this case, (4) reduces to a linear
equation with the single solution λk = (z/d − 1)−1, admitting stable systems only when
z > d. The corresponding modulus is K ∼ krd−2

0 (z/d − 1), which can be written as a power
law K ∼ (z − zc)

f to explicitly demonstrate the continuous transition at z = zc = d with
an exponent f = 1. Effective medium theory predicts the same exponent but at the higher
transition point zema

c = 2d [16], as predicted by Maxwell counting. However, EMA requires
knowledge of Green’s function for an equivalent homogeneous system. The advantage of
our MMA approach is that it predicts a finite-z transition without requiring a known Green’s
response, and thus can be applied to a broader range of materials, at least qualitatively. In
particular, the generalization to internal stresses is straightforward, as we now demonstrate.

The simplest state of internal stress to consider is a symmetric distribution ε0 = −ε1, i.e.
p = 1

2 . In this case, equation (4) only permits real positive roots in one region of parameter
space corresponding to z � zc(ε0) � d as plotted in figure1. The transition points lie along
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Figure 2. Same as figure 1 but for an asymmetric distribution of internal stresses in which a fraction
p = 0.1 bonds have dimensionless extension ε0 and 1 − p = 0.9 have ε1 = −ε0p/(1 − p). The
thick line and solid disc correspond to continuous transitions; all other transitions are discrete.

the curve

ε2
0 = 4(z − d)3

(3d)3(z − 1)
, (5)

which obeys the expected symmetry under ε0 ↔ −ε0. The value of K at the transition is most
easily expressed in terms of z − d,

Ktrans ∼ r2−d
0 λ−1 = 2kr2−d

0 (z − d)

3d
. (6)

By inspection of (5) and (6), it is clear that the transition is first order everywhere except at
ε0 = 0, i.e. internal stresses both move the transition to a higher zc, and change its nature to
first order.

This result broadly holds for asymmetric distributions with p 	= 1
2 , i.e. ε0 	= −ε1, although

the transitions for ε0 > 0 and ε0 < 0 are no longer symmetrical. Expanding about z − d to
O[(z − d)2], the transitions are at

ε0 =
√

4(1 − p)(z − d)3

p(3d)3(d − 1)
+

(1 − 2p)(z − d)2

3pd2(d − 1)
+ · · · . (7)

The leading order term ∼(z − d)3/2 admits two roots, corresponding to the transition lines
for ε0 > 0 and ε0 < 0. The next-to-leading order term always has the same sign (that of
1 − 2p) for both roots, thus breaking the symmetry about ε0 = 0. K at the transition is also
asymmetric, but remains always first order for ε0 	= 0,

Ktrans ∼ 2kr2−d
0 (z − d)

3d
×

{
1 +

1 − 2p

6

√
3(z − d)

d(d − 1)p(p − 1)

}
(8)

plus higher order terms, where the sign of the square root is chosen to match that in (7).
However, the modulation of the transition curves for z > d is not the only effect of

asymmetric stresses; a distinct stable regime with z < d also emerges, as seen in figure 2. The
ε0 ≡ 0 boundary of this region stretches from z = 1 to z = z∗ with

z∗ − 1 = (d − 1)

[
1 +

4dp(1 − p)

(1 − 2p)2

]−1

, (9)
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and extends strictly in the direction of sign opposite to 1 − 2p (i.e. ε0 < 0 for p < 1
2 ),

narrowing as ε0 increases in magnitude. In words, this regime corresponds to systems with a
small proportion of highly compressed contacts in a sea of weakly tensile bonds (i.e. small p
and ε0 < 0). We speculate that the z > d and z < d stable regions may be analogous to the
glass and gel states, respectively, in colloids with short-range attractions [17], although the
transition here is a purely percolation phenomenon and has no entropic component. That this
new regime extends down to the unphysical value z = 1 is most likely a further consequence
of the approximations involved: just as the unstressed transition lies at z = 2d in real systems,
so would the lowest allowed value be z = 2, as realized in, e.g. long strings of beads under
tension.

5. Discussion and summary

Experimentally verifying these predictions should, in principle, be straightforward. According
to this theory, the magnitude of K at the transition, and the increase in the transition value
zc, should both increase monotonically with the magnitude of the internal stresses. Indeed,
this effect may have already been observed in SixSe1−x glasses [5], although it is currently
interpreted as evidence for an intermediate rigid-but-stressless regime resulting from self-
organization of the contact topology during cooling [18]. Differentiating between these two
descriptions could be achieved by varying the rate of quench [6]: faster quenches will generate
a broader distribution of internal stresses, and hence (according to the theory presented here)
a higher zc and greater jump in elastic properties at the transition. Slow quenches would give
small internal stresses and could even appear as continuous transitions, to within experimental
error. It is less clear how the degree of asymmetry p 	= 1

2 will depend on sample preparation,
and hence it is difficult to predict when the low-z stable regime will occur. Molecular
dynamics simulations, where some quantity analogous to p could be directly measured, may
help to resolve this issue.

Unless there exist residual interactions capable of maintaining solidity, systems placed
in an unstable region will plastically rearrange according to the dynamical properties of the
particles and the surrounding medium. Clearly such dynamics cannot be described by the
static theory presented here. Nonetheless, some qualitative observations based on our results
can be made. Firstly, unless the system completely relaxes its internal stresses during the
dynamical phase, it will not have a coordination number at or near to the usually quoted
percolation transition (z = 2d here), since such systems are simply not stable when there
are internal stresses. This is a qualitative prediction that could be verified by molecular
dynamics simulations, for instance. Secondly, assuming that the rearranging system eventually
comes to halt on the boundary between stable and unstable regions, as recently proposed for
the clustering of weakly attractive colloids [19], then the elastic moduli will only become
arbitrarily small if the magnitude of internal stresses are similarly small. Again, this is a clear
prediction of a qualitative difference between stressed and unstressed networks.

A secondary aspect of this paper has been the introduction of a new approximation
method, the MMA, which predicts a range of non-trivial behaviour despite the simplicity of
its assumptions. Indeed, it qualitatively reproduces the results of effective medium theory
for unstressed systems with much less algebra. It is therefore sensible to ask when the
approximation is expected to work, and when it might fail. The MMA proceeds by closing
the force balance equations under the assumption of a parametrized form of local response.
While this will always fail quantitatively, it should only qualitatively fail when the actual
response is very different to the assumed form. In this instance something similar to the
actual mode (if known) could be employed instead. Another potential problem is that the
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displacement of particles connected to the perturbed one is assumed to depend only on
the change in contact force with the perturbed particle itself. Given that the mean force
must decay monotonically with distance (to obey force balance), the closest bonds will be
perturbed the greatest and so this seems reasonable; however, exotic modes in which the force
does not decay in every direction may cause this assumption to fail. Even in such instances,
it is hoped the MMA could be extended to faithfully mimic the actual response.

In summary, we have argued that internal stresses qualitatively alter the nature of the
rigidity transition to configurations with non-vanishing elastic modulii, making it first order
and also moving the threshold coordination number zc to a higher value. A distinct stability
regime with low z was also predicted to arise when the internal stresses are asymmetrically
distributed. Although only central forces have been considered here, these basic findings are
expected to extend to systems with bending forces and other microscopic interactions. It is
hoped that numerical and experimental verification of these claims will be forthcoming.
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[10] Sollich P, Lequeux F, Hébraud P and Cates M E 1997 Phys. Rev. Lett. 78 2020
[11] Fynewever H, Perera D and Harrowell P 2000 J. Phys.: Condens. Matter 12 A399

Chen S-P, Egami T and Vitek V 1988 Phys. Rev. B 37 2440
Kustanovich T, Rabin Y and Olami Z 2003 Phys. Rev. B 67 104206

[12] Cipellitti L, Ramos L, Manley S, Pitard E, Weitz D A, Pashkovski E E and Johansson M 2003 Faraday Discuss.
123 237

[13] Landau L D and Lifshitz E M 1986 Theory of Elasticity 3rd edn (Oxford: Butterworth-Heinmann)
[14] Alexander S 1998 Phys. Rep. 296 65
[15] Calladine C R 1978 Int. J. Solids Struct. 14 161

Connelly R and Whiteley W 1996 SIAM J. Discrete Math. 9 453
Mech J 2003 Phys. Solids 51 383

[16] Feng S, Thorpe M F and Garboczi E 1985 Phys. Rev. B 31 276
[17] Puertas A M, Fuchs M and Cates M E 2002 Phys. Rev. Lett. 88 098301
[18] Thorpe M F, Jacobs D J, Chubynsky M V and Phillips J C 2000 J. Non-Cryst. Solids 266–269 859

Micoulaut M 2002 Europhys. Lett. 58 830
[19] Kroy K, Cates M E and Poon W C K 2003 Preprint cond-mat/0310566


